Expression and Analysis of Joint Roughness Coefficient Using Neutrosophic Number Functions

نویسندگان

  • Jun Ye
  • Jiqian Chen
  • Rui Yong
  • Shigui Du
چکیده

In nature, the mechanical properties of geological bodies are very complex, and its various mechanical parameters are vague, incomplete, imprecise, and indeterminate. In these cases, we cannot always compute or provide exact/crisp values for the joint roughness coefficient (JRC), which is a quite crucial parameter for determining the shear strength in rock mechanics, but we need to approximate them. Hence, we need to investigate the anisotropy and scale effect of indeterminate JRC values by neutrosophic number (NN) functions, because the NN is composed of its determinate part and the indeterminate part and is very suitable for the expression of JRC data with determinate and/or indeterminate information. In this study, the lower limit of JRC data is chosen as the determinate information, and the difference between the lower and upper limits is chosen as the indeterminate information. In this case, the NN functions of the anisotropic ellipse and logarithmic equation of JRC are developed to reflect the anisotropy and scale effect of JRC values. Additionally, the NN parameter ψ is defined to quantify the anisotropy of JRC values. Then, a two-variable NN function is introduced based on the factors of both the sample size and measurement orientation. Further, the changing rates in various sample sizes and/or measurement orientations are investigated by their derivative and partial derivative NN functions. However, an actual case study shows that the proposed NN functions are effective and reasonable in the expression and analysis of the indeterminate values of JRC. Obviously, NN functions provide a new, effective way for passing from the classical crisp expression and analyses to the neutrosophic ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics

In rock mechanics, the study of shear strength on the structural surface is crucial to evaluating the stability of engineering rock mass. In order to determine the shear strength, a key parameter is the joint roughness coefficient (JRC). To express and analyze JRC values, Ye et al. have proposed JRC neutrosophic numbers (JRC-NNs) and fitting functions of JRC-NNs, which are obtained by the class...

متن کامل

Expressions of Rock Joint Roughness Coefficient Using Neutrosophic Interval Statistical Numbers

In nature, the mechanical properties of geological bodies are very complex, and their various mechanical parameters are vague, incomplete, imprecise, and indeterminate. However, we cannot express them by the crisp values in classical probability and statistics. In geotechnical engineering, we need to try our best to approximate exact values in indeterminate environments because determining the ...

متن کامل

Joint Risk Analysis of Meteorological Droughts (Case Study of East Iran)

Droughts are extreme phenomena that are described based on the characteristics of continuity in time and according to their spatial effects and can occur in any climatic situation. Recognition and behavior of droughts, which are closely and directly related to water resources management, are of particular importance. The main purpose of this study is to assess the risk of drought using Copula f...

متن کامل

Rough Neutrosophic Multi-Attribute Decision-Making Based on Grey Relational Analysis

This paper presents rough netrosophic multiattribute decision making based on grey relational analysis. While the concept of neutrosophic sets is a powerful logic to deal with indeterminate and inconsistent data, the theory of rough neutrosophic sets is also a powerful mathematical tool to deal with incompleteness. The rating of all alternatives is expressed with the upper and lower approximati...

متن کامل

بررسی مقاومت پوشش گیاهی غیر مستغرق در مقابل جریان در ساحل رودخانه‌ها

Tamarix sricta plant grows in riversides of Karun river. Outer body plant in the flood times causes decrease in water velocity, preventing erosion. One of the factors by which the hydraulic resistance is expressed is the roughness coefficient. Measurement of roughness coefficient of the existing plants in these riversides and floodplains, and surveying their effects on the velocity decrease and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017